Mapping the Binding Site of a Large Set of Quinazoline Type EGF-R Inhibitors Using Molecular Field Analyses and Molecular Docking Studies
نویسندگان
چکیده
In the current work, three-dimensional QSAR studies for one large set of quinazoline type epidermal growth factor receptor (EGF-R) inhibitors were conducted using two types of molecular field analysis techniques: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). These compounds belonging to six different structural classes were randomly divided into a training set of 122 compounds and a test set of 13 compounds. The statistical results showed that the 3D-QSAR models derived from CoMFA were superior to those generated from CoMSIA. The most optimal CoMFA model after region focusing bears significant cross-validated r(2)(cv) of 0.60 and conventional r(2) of 0.92. The predictive power of the best CoMFA model was further validated by the accurate estimation to these compounds in the external test set, and the mean agreement of experimental and predicted log(IC(50)) values of the inhibitors is 0.6 log unit. Separate CoMFA models were conducted to evaluate the influence of different partial charges (Gasteiger-Marsili, Gasteiger-Hückel, MMFF94, ESP-AM1, and MPA-AM1) on the statistical quality of the models. The resulting CoMFA field map provides information on the geometry of the binding site cavity and the relative weights of various properties in different site pockets for each of the substrates considered. Moreover, in the current work, we applied MD simulations combined with MM/PBSA (Molecular mechanics/Possion-Boltzmann Surface Area) to determine the correct binding mode of the best inhibitor for which no ligand-protein crystal structure was present. To proceed, we define the following procedure: three hundred picosecond molecular dynamics simulations were first performed for the four binding modes suggested by DOCK 4.0 and manual docking, and then MM/PBSA was carried out for the collected snapshots. The most favorable binding mode identified by MM/PBSA has a binding free energy about 10 kcal/mol more favorable than the second best one. The most favorable binding mode identified by MM/PBSA can give satisfactory explanation of the SAR data of the studied molecules and is in good agreement with the contour maps of CoMFA. The most favorable binding mode suggests that with the quinazoline-based inhibitor, the N3 atom is hydrogen-bonded to a water molecule which, in turn, interacts with Thr 766, not Thr 830 as proposed by Wissner et al. (J. Med. Chem. 2000, 43, 3244). The predicted complex structure of quinazoline type inhibitor with EGF-R as well as the pharmacophore mapping from CoMFA can interpret the structure activities of the inhibitors well and afford us important information for structure-based drug design.
منابع مشابه
Molecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors
Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calcu...
متن کاملIn Silico Screening Studies on Methanesulfonamide Derivatives as Dual Hsp27 and Tubulin Inhibitors Using QSAR and Molecular Docking
The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is increased in response to various stress stimuli such as anticancer chemotherapy. This phenomenon can lead to survive of the cells and causes drug resistance. In this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin inhibitors in the treatment of cancer were applied to quantitative structure–act...
متن کاملMolecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin
Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...
متن کاملMolecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کاملSynthesis and Molecular Docking studies of Some Tetrahydroimidazo[1,2-a] pyridine Derivatives as Potent α-Glucosidase Inhibitors
KAl(SO4)2.12H2O is found to efficiently and heterogeneously catalyze the one-pot three-component reaction of 2-(nitromethylene)imidazolidine, malononitrile and aldehydes under mild conditions to afford the corresponding tetrahydroimidazo[1,2-a]pyridine in good yields and short reaction times. Docking study of some compounds in the active site of α-glucosidase demonstrated that these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and computer sciences
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2003